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Abstract. We describe a resource bounding technique called theFlow Balance
Constraint(FBC) to tightly bound the amount of available resource for a set of
partially ordered events with piecewise constant resource impact. We provide an
efficient algorithm for calculatingFBC and bound its complexity. We compare
this technique with two existing resource bounding techniques, the Balance Con-
straint (BC) due to Laborie and the Resource Envelope (Et) due to Muscettola.
We prove that usingFBC to halt search under chronological search with a static
variable and value order generates smaller search trees than eitherBC or Et. We
also show thatEt andBC are not strictly comparable in terms of the size of the
search trees generated under chronological search with a static variable and value
order. We then show how to generalizeFBC to construct tighter resource bounds
but at increased computational cost.

1 Introduction

Scheduling requires ordering tasks while simultaneously satisfying temporal and re-
source constraints. Finding and maintainingtemporally flexibleschedules has numer-
ous advantages over finding a fixed-time schedule. Usually, scheduling is performed
assuming that the problem’s characteristics are known in advance, do not change, and
that the execution of the schedule is deterministic. However, these assumptions are of-
ten violated in practice. For example, if events do not take place exactly when they
are scheduled, it may be costly to find a new schedule consistent with the actual event
execution times [4]. Techniques such as that described in [5] make it possible to ef-
ficiently update the flexible schedule once the precise timing of events are known. A
second advantage is that it can be less expensive to find flexible schedules because
fewer decisions need to be made; thus, less search is necessary. This is true for simple
temporal constraints, but the presence of resource constraints requiresefficient tight re-
source bounding techniquesto determine that the resource constraint is always or never
satisfied.

It is straightforward to calculate the resource bounds of events whose execution
time are fixed. The task becomes more difficult when activities or events are not fixed
in time or are unordered, and more difficult still when events can have arbitrary impact
on resources. In the context of constructive search, early detection of success or failure
is often important to achieving good search performance. In this paper we focus on
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the ability of resource bounding techniques to reduce the cost of constructive search
algorithms by means of detecting success or failure.

Following Muscettola [1], Laborie [2] has provided a simple but expressive formal-
ism for scheduling problems calledResource Temporal Networks(RTNs). In this paper
we study RTNs consisting of aSimple Temporal Network(STN) as described in [3],
constant resource impacts (either production or consumption) for events, and piecewise
constant resource bounds; Laborie [2] refers to this subclass as

〈
R,LQ, STN 6=〉. There

are two existing techniques for bounding resource availability in such RTNs; the Bal-
ance Constraint (BC) [6] due to Laborie, and the Resource Envelope (Et) [1] due to
Muscettola. These techniques are described in more detail in Section 2.BC features an
efficient but loosely bounding approximation, whileEt is more costly but provides a
tight bound (in all cases a schedule justifying the bound is proved to exist). Somewhat
surprisingly, these techniques are not strictly comparable in terms of the size of the
search trees generated under chronological search. We provide examples demonstrat-
ing this in Section 3. In Section 4 we describe theFlow Balance Constraint(FBC),
a novel synthesis of these two approaches. In Section 5 we prove thatFBC generates
smaller proof trees than eitherBC or Et under chronological search. In Section 6 we
describe the complexity of a naive algorithm to calculateFBC. We then show how to
calculateFBC incrementally, thereby reducing its computational cost. In Section 7 we
then generalizeFBC in order to construct even tighter resource bounds but at increased
computational cost. Finally, in Section 8 we conclude and describe future work.

2 Previous Work

In this paper we will assume that time is represented using integers1. We will also
assume that the resource impact of each event is known when solving begins. We will
assume each RTN has only one resource, that there is one constraint≤ r, and one
constraint≥ 0 on the resource. We also assume that the lower bound of the scheduling
horizon is0, and thatr units of resource are available at time0.

The techniques we study are aimed at establishingHalting Criteria (HC) for chrono-
logical backtracking search algorithms schedulers that maintain temporal flexibility. By
”halt” we mean identifying a leaf node in the chronological search tree. A scheduler
can halt if theNecessary Truth Criterion[2, 8] (NTC), is satisfied, namely, ifall feasi-
ble solutions of the STN also satisfy the resource constraints. The NTC is satisfied if the
upper bound on the available resource is always below the maximum available resource
r, and the lower bound on the available resource is always above0. Schedulers can also
halt if no feasible solution of the STN can satisfy the resource constraint2. This is true
if the upper bound on the available resource is ever below0, or the lower bound on the
available resource is ever abover. Otherwise, the scheduler must continue search, i.e.
the current state is an interior node of the search tree.

We will use the following notation: LetN be the set of all events of an RTN and
n = |N |. Let X ∈ N ; c(X) denotes the resource impact ofX. If c(X) < 0 X is said
to be aconsumer; if c(X) > 0 thenX is said to be aproducer. As defined in [1],X
anti-precedesY if X must occurs at or afterY (i.e. Y ≤ X). A predecessor setof a
set of eventsS has the property that ifX ∈ S then every eventY such thatY ≤ X is
also inS. A successor setof a setT has the property that ifX ∈ T then every event
Y such thatY ≥ X is also inT . Let R be an RTN and letA(R) be any procedure for
evaluating the HC. IfA(R) = T then the HC is true andR has a solution. IfA(R) = F ,
the HC is true andR has no solution. IfA(R) =? the HC is false and it is unknown
whetherR has a solution.

1 This assumption can be relaxed, but leads to resource bounds holding over half-open intervals
of time.

2 One could refer to this as the Necessary Falsity Criteria (NFC).
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2.1 The Balance Constraint

Laborie’sBalance Constraint(BC) [6] calculates bounds on the maximum and mini-
mum amount of a resource immediately prior to and immediately following the execu-
tion of an eventX. The STN is partitioned relative toX into the following sets: Before
B(X), Before or EqualBS(X), EqualS(X), Equal or AfterAS(X), After A(X), and
UnorderedU(X). Note that the predecessor set ofX is {B(X) ∪ BS(X) ∪ S(X)}
and the successor set ofX is {A(X) ∪ AS(X) ∪ S(X)} These sets are then used to
calculate the following quantities:L<

min(X) for the minimum available resource before
X occurs,L<

max(X) for the maximum available resource beforeX occurs,L>
min(X),

for the minimum available resource afterX has occurred, andL>
max(X) for the max-

imum available resource afterX has occurred. A sample calculation: letP>
min(X) =

{B(X) ∪ BS(X) ∪ {V ∈ AS(X) ∪ U(X)|c(V ) < 0}} Then
∑

Z∈P >
min

(X) c(Z). is

a lower bound onL>
min(X). The other bounds can be constructed in a similar manner.

There may be no schedule consistent with the temporal constraints resulting in these
calculated resource availabilities. The computational complexity ofBC is dominated
by the maintenance of arc-consistency of the STN.

2.2 The Resource Envelope

The Envelope AlgorithmEt [1] finds theenvelopeof an RTN, that is, the functions
from time to the maximumLmax(t) and minimumLmin(t) available resource. Events
are partitioned intoC(t), those that must have occurred byt; P (t), those that are per-
mitted to occur att, andO(t), those that can’t occur until aftert. The maximum avail-
able resource at a timet, Lmax(t), corresponds to a schedule in which the events in
Pmax(t) ⊂ {P (t)∪C(t)} all occur beforet. To find the set∆Pmax(t) ⊂ P (t) that con-
tributes toPmax(t), a maximum flow problem is constructed using all anti-precedence
links derived from the arc-consistent STN. The rules for building the flow problem to
find Lmax(t) are as follows: all events inP (t) are represented by nodes of the flow
problem. IfX ≥ Y then the flow problem contains an arcX → Y with infinite ca-
pacity. If c(X) > 0 then the problem contains an arcσ → X with capacityc(X). If
c(X) < 0 then the problem contains an arcX → τ with capacity|c(X)|. To con-
struct the flow problem to findLmin(t), if c(X) > 0 then the problem contains an
arc X → τ with capacityc(X), and if c(X) < 0 then the problem contains an arc
σ → X with capacity|c(X)|. Examples of the flow problem construction are shown
in Figure 1. The maximum flow of this flow network matches all possible production
with all possible consumption in a manner consistent with the precedence constraints.
The predecessor set of those events reachable in the residual flow is∆Pmax(t), and
∆PC

max(t) = {P (t)−∆Pmax(t)}. The tightness of the bound is guaranteed by proving
that adding the constraints{Xub ≤ t}∀X ∈ ∆Pmax(t) and{Ylb > t}∀Y ∈ ∆PC

max(t)
is consistent with the original STN.

It turns out that∆Pmax(t) need only be computed at≤ 2n distinct times. The
complexity of the algorithm described in [1] isO(n ∗MaxFlow(n, m) + n2), where
n = |N | andm is the number of anti-precedence relationships in the arc-consistent
STN. In [7] this is reduced toO(MaxFlow(n, m) + n2) by taking advantage of the
order in which edges are added to and removed from a single maximum flow problem.
The crucial observation is that when computingEt an event always move from open to
pending to closed and stays closed. As shown in Figure 1 (b) and (c), this guarantees
that events topologically ”late” in the flow problem are removed, while topologically
”early” events are added to the flow problem. The insight is that the flow problem need
not be solved anew; the previous flow calculation can be reused, thereby saving a factor
of n. As an aside, a more general incremental maximum flow algorithm is given in [9],
but it doesn’t assume any particular order of flow arc additions and deletions.
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3 Examples of Non-Domination

Muscettola previously demonstrated thatEt can prove the HC is satisfied in cases where
BC cannot. In this section we provide an example whereEt fails to prove the HC is
satisfied in cases whereBC can. The consequence of this is that neither algorithm
”dominates” the other when used solely to halt search. SinceEt provides the tight-
est possible mapping from time to minimum and maximum resource availability, it is
somewhat surprising thatEt fails to dominateBC.

3.1 BC Doesn’t DominateEt

Muscettola [1] describes an RTN for whichBC cannot not prove the HC is satisfied
butEt can. This example is modified and reproduced in Figure 1. Initially the resource
has2 units available.BC will calculateL>

min(A) as follows:U(A) = {W,X, Y, Z}
and A(A) = {B,C,D}. It assumesW and Y occur beforeA, and thatX and Z
occur afterA. SinceL>

min(A) = −1, BC concludes that more decisions are needed.
Clearly, this schedule is not consistent with the original STN, so the bound calculated
by BC is ”loose”. TheEt algorithm is able to prove that the HC is satisfied in this
case by determiningLmin(t) ≥ 0 and Lmax(t) ≤ 2 over the scheduling horizon.
As a case in point, considerLmin(10). The pending setP (10) = {B,C,D,X, Y, Z}
and the resulting flow problem is shown in Figure 1 (c). The maximum flow for this
network saturates the arcs toC andY . No events are reachable in the residual graph, so
P<

max(10) = ∅. We see thatLmin(10) = 0 sinceA andW are closed at10.

(a) Resource Temporal Network with 
2 units of resource initially available.
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Fig. 1.An RTN for whichBC fails to detect that the HC is true because a solution exists.

3.2 Et Doesn’t DominateBC

Figure 2 describes an RTN for whichBC can show that the HC is satisfied. Again,
initially the resource has2 units available. In this case, sinceB(D) = {A,B,C} and
{BS(D)∪U(D)} = ∅, BC will find L<

max(D) = −5. This proves that, no matter what
additional constraints are imposed, the resource bound will be violated. By contrast,Et

cannot conclude that the HC is satisfied. We see thatB andC can be postponed until
time 10, andA can be scheduled as early as1, leading toLmax(1) = 3. At time 2,
D could occur, but maximizing resource availability would then require scheduling
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everything before2 with a resource availability of0 being the result. At time2 we can
still find a schedule in whichA occurs before all other events, with resource availability
3; so Lmax(2) = 3. At time 10, however, both consumption eventsB andC must
have taken place; in order to maximize the available resource,D must occur, leading to
Lmax(10) = 0. Furthermore,Lmin(t) provides no assistance in proving the HC is true.
Not only doesEt fail to show that the HC is true, there are non-trivial ordering decisions
that can be made; in the worst case, schedulers could spend a considerable amount of
time fruitlessly continuing the search from states like the one shown in Figure 2.

(a) Resource Temporal Network with 
2 units of resource initially available.

A

[1,10]

C

[1,10]
D

B [1,10]
<[1,10],-4>
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(b) Envelope and Balance 
Constraint upper bounds

Lmax(t)

-1
-2

-4
-3

-5

Lmax
<(B)

Lmax
<(D)

Lmax
>(A)

Lmax
>(D)

Lmax
>(B)

-6

1

3
2

0
-1
-2

-4
-3

-5
-6

Lmax
>(C)

Lmax
<(C)

Lmax
<(A)

Lmin(t)

Fig. 2.An RTN for whichEt fails to detect that the HC is true because no solution exists.

4 A Better Check for the Halting Criteria

In order to halt search more effectively than eitherEt or BC, we adopt a synthesis
of both strategies. We use the same partition of events used by Laborie [6]. Like La-
borie, we then find bounds onL<

max(X), L<
min(X), L>

max(X), and L>
min(X). Like

Muscettola, we build a maximum flow problem whose residual graph is used to con-
struct the supporting setsP<

max(X), P<
min(X), P>

max(X), andP>
min(X). The rules for

constructing the flow problem are identical to those for calculatingEt; only the set of
events defining the flow problems are different. To find∆P<

max(X) and∆P<
min(X), we

solve a flow problem over the set of eventsBS(X)∪U(X). In these cases,P<
max(X) =

{∆P<
max(X)∪B(X)} andP<

min(X) = {∆P<
min(X)∪B(X)}. We define∆P<C

max(X) =
{{BS(X)∪U(X)}−∆P<

max(X)} and∆P<C
min(X) = {{BS(X)∪U(X)}−∆P<

min(X)}
To find ∆P>

max(X) and∆P>
min(X), we solve a flow problem over the set of events

AS(X)∪U(X). In these cases,P>
max(X) = {∆P>

max(X)∪S(X)∪B(X)∪BS(X)}
andP>

min(X) = {∆P>
min(X) ∪ S(X) ∪ B(X) ∪ BS(X)}. We define∆P>C

max(X) =
{{AS(X)∪U(X)}−∆P>

max(X)} and∆P>C
min(X) = {{AS(X)∪U(X)}−∆P>

min(X)}.
These supporting sets define schedules that prove the bounds are tight. For exam-
ple, the resulting setP<

max(X) defines an STN constructed by adding the constraints
∀V ∈ P<

max(X){V < X} and∀V ∈ P<C
max(X){X ≤ V }. We call the new procedure

the Flow Balance Constraint(FBC), since it combines the features of the Balance
Constraint with the flow-based approach. For each eventX we must calculate4 bounds;
however, the actual number of bounds calculations is≤ 4n, since we observe that the
same bounds apply∀V ∈ S(X). The algorithm forFBC is described in Figure 3. As
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is done in [6], we maintain the partition of the STN relative to each eventX during the
arc-consistency enforcement phase.

FBC(R)
Enforce Arc Consistency onR
Maintain event-centric partitions
for each eventX ∈ N

Set up flow problems
Bound(X)

end for
end

Bound(X)
Find∆P <

max(X) ⊂ BS(X) ∪ U(X)
L<

max(X) =
∑

V ∈{∆P <
max(X)∪B(X)} c(V )

Find∆P <
min(X) ⊂ {BS(X) ∪ U(X)}

L<
min(X) =

∑
V ∈{∆P <

min
(X)∪B(X)} c(V )

Find∆P >
max(X) ⊂ {AS(X) ∪ U(X)}

L>
max(X) =

∑
V ∈{∆P >

max(X)∪B(X)∪BS(X)∪S(X)} c(V )

Find∆P >
min(X) ⊂ {AS(X) ∪ U(X)}

L>
min(X) =

∑
V ∈{∆P >

min
(X)∪B(X)∪BS(X)∪S(X)} c(V )

end

Fig. 3.A sketch of the Flow Balance Constraint.

We now prove that the resulting bounds on quantities likeL<
max(X) are tight. To do

so, we first show that there is at least one schedule justifying the bound, and then show
that there is no better bound than that found using the flow problem.

Theorem 1. Let R be an RTN andX be an event inR. Suppose∆P<
max(X) 6= ∅.

Let R′ be the STN formed by adding the following constraints toR: {V < X} for all
V ∈ ∆P<

max(X) and{X ≤ W} for all W ∈ ∆P<C
max(X). ThenR′ has at least one

temporally consistent solution.

Proof. SinceV ∈ {BS(X)∪U(X)} the imposition of a single constraint alone doesn’t
make the STN inconsistent. Imposing a constraintV < X can only decreaseVub or
increaseXlb. Since∆P<

max(X) is a predecessor set, all{V < X} can be imposed
simultaneously without impacting consistency. Imposing a constraintX ≤ W can only
decreaseXub or increaseVlb. Since∆P<C

max(X) is a successor set, all{X ≤ W} can
also be imposed simultaneously without impacting consistency. Finally,X is the only
event whose bounds are acted on by both classes of constraint. Consider two events
A,B. SinceA ∈ ∆P<

max(X) andB ∈ ∆P<C
max(X) we know it can’t be the case that

B < A. But then eitherA ≤ B or A andB can be ordered in any way, and we already
knowX can be ordered any way with respect toA or B. Thus,A < X ≤ B is possible
and no such ordering prevents other linearizations with respect toX. 2

Theorem 2. LetR be an RTN andX be an event inR. Suppose∆P<
max(X) 6= ∅. Then∑

V ∈∆P <
max(X)∪B(X) c(V ) is the maximum possible value ofL<

max(X).

Proof. Since we construct the flow problems in exactly the same way as [1], we state
this as a corollary of Theorem 1 of [1].2

The proofs for the tightness of the bounds onL>
max(X), L<

min(X) andL>
min(X),

are similar.

4.1 Discovering Constraints WithFBC

The calculation ofFBC allows the inference of new bounds on temporal constraints
and new precedence constraints on events in a manner similar toBC [6]. We know that
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L<
max(X) =

∑
V ∈{∆P <

max(X)∪B(X)} c(V ). SupposeL<
max(X) > 0, r+

∑
V ∈B(X) c(V ) =

d < 0 and that there is a predecessor setP ⊂ ∆P<
max(X) such that

∑
V ∈P c(V ) < |d|.

If X occurs before or at the same timeP ends, then the resource constraint will be
violated. Lett be the earliest end time of all such sets. Thent + 1 is a valid new lower
bound forX, i.e.Xlb > t. If |∆P<

max(X)| = k, calculating
∑

V ∈P c(V ) and the earli-
est end timet for every predecessor set of every event requiresO(k2) since we already
store the precedences to create the flow graphs. We can also tighten the bound onXub.
Suppose there is a predecessor setP such that∆P<

max(X) ⊂ P ⊂ {BS(X) ∪ U(X)}
and

∑
V ∈P c(V ) < |d|. If X occurs at the same time or afterP ends then the resource

constraint will be violated. Lett be the latest ending time of all such sets. Thent− 1 is
a valid upper bound onX, i.e.Xub < t. If |∆P<C

max(X)| = k, calculating
∑

V ∈P c(V )
and the earliest end timet for every predecessor set of every event requiresO(k2). Sim-
ilar arguments allow boundingX using∆P<

max(X) when
∑

V ∈B(X) c(V ) > r as well
as∆P>

min(X) and∆P>
max(X).

Inferring precedence constraints is a little trickier. Again, supposer+
∑

V ∈B(X) c(V ) =
d < 0. Imposing the constraintX < Y doesn’t impactB(X) but may lead to a
new set defining the maximum available resource, denoted∆P

′<
max(X). Suppose that

∃Y ∈ BS(X) ∪ U(X) such thatX < Y ⇒ r +
∑

V ∈{∆P
′<
max(X)∪B(X)} c(V ) < 0.

Then we can safely impose the precedence constraintX ≥ Y . It is sufficient to find
Y ∈ ∆P<

max(X) such that its successor setS ⊂ ∆P<
max(X) has the property that∑

V ∈{∆P <
max(X)−S} c(V ) < |d|. Under these circumstances, ifX occurs beforeY ,

then the remaining events in∆P<
max(X) cannot offset the events inB(X).

Imposing the constraintY < X may lead to a newB′(X). Suppose that∃Y ∈
{BS(X)∪U(X)−∆P<

max(X)} such thatY < X ⇒ r+
∑

V ∈{∆P
′<
max(X)∪B′(X)} c(V ) <

0. Then we can safely impose the constraintY ≥ X. It is sufficient to findY such that
its predecessor setS ⊂ {BS(X)∪U(X)} has the property thatr+

∑
V ∈{B(X)∪S} c(V ) =

e < 0 and
∑

V ∈{∆P <
max(X)∩S} c(V ) < |e|.

A Resource Temporal Network.  Assume the resource bound is 2.   For this 
RTN, ∆Pmin(C) = {F,G,H}.

B C

<[2,12],-1><[1,11],-2>

F G
<[4,12],+1><[3,11],+1>

[1,1]A

<[0,10],-2>
[1,1]

C can't occur strictly before G
without violating the resource  
constraint so we can infer G<C.

[1,1]

[0,∞]

H[1,1]

<[5,13],+1>

Fig. 4. Inferring new precedence constraints withFBC.

If |∆P<
max(X)| = k calculating

∑
V ∈∆P <

max(X)−S c(V ) for every successor or
predecessor set requiresO(k2) since we already store the precedences to create the flow
graphs. Similar implied precedences can be discovered using the other bounds. To see
how this works, consider Figure 4. In this case∆P<

max(C) = {F,G, H}. The successor
set of G is {G, H} and r +

∑
V ∈{B(C)} = −2. We see that allowingC to occur

beforeG would lead to a resource constraint violation, since the only event remaining
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in ∆P<
max(C) is F ; it produces1, which is not enough to offsetr+

∑
V ∈{B(C)} = −2.

In this case we can infer a new precedence constraintG ≤ C.
Note that if we relax the assumption that event resource impacts are known and

allow schedulers to choose resource impacts, we can also infer restrictions on resource
impacts asBC does [6].

4.2 RelatingEt and FBC

In this section, we formally establish the relationship between the intervals over which
theFBC andEt bounds hold. Suppose we find a setP<

max(X) that supportsL<
max(X).

What is the interval of time over which this value holds?L<
max(X) is the maximum

available resource beforeX occurs assuming that we impose the constraints∀V ∈
P<

max(X){V < X} and∀V ∈ P<C
max(X){X ≤ V } to get a new RTNR′. Note that

the new unordered setU ′(X) = ∅, andBS′(X) = ∅, and the new closed setB′(X) =
{P<

max(X) ∪ B(X)}. L<
max(X) can be the resource availability no earlier thanV ∗

lb =
maxV ∈B′(X) Vlb. Forcing events to precedeX does not change their earliest start times.
However, forcing events to followX may lead to a new upper bound forX, Xub′ . Thus,
L<

max(X) = Lmax′(t) over the interval[V ∗
lb, Xub′ − 1]. An example is shown in Figure

5.
Now suppose we find a setP>

max(X) that supportsL>
max(X). This bound assumes

that we impose the constraints∀V ∈ P>
max(X){V ≤ X} and∀V ∈ P>C

max(X){X <
V } to get a new RTNR′. Note that the new pending setU ′(X) = ∅, and{B′(X) ∪
S′(X)∪BS′(X)} = P>

max(X). L>
max(X) can be the resource availability no later than

W ∗
ub = minW∈P >C

max(X) Wub. Forcing events to followX does not change their upper
bounds. However, forcing events to precedeX may lead to a new lower boundXlb′ .
thatL>

max(X) holds. Thus,L>
max(X) = Lmax′(t) over the interval[Xlb′ ,W ∗

ub − 1].
We now can demonstrate the relationship betweenLmax(t) and the boundsL<

max(X), L>
max(X)

andLmin(t) and the boundsL<
min(X), L>

min(X). The simplest result would be to prove
that one of the event bounds holds at all times and show how to constructLmax(t) from
the event bounds; unfortunately, we do not prove this. However, we can generate the en-
tire time-based profileLmax′(t) after imposing the temporal constraints for each event
bound and use this to show a resource bound for all times.

Theorem 3. If L<
max(X) holds over the interval[x, y] then∀t ∈ [x, y]L<

max(X) ≤
Lmax(t). If L>

max(X) holds over the interval[x, y] then ∀t ∈ [x, y]L>
max(X) ≤

Lmax(t). If L<
min(X) holds over the interval[x, y] then∀t ∈ [x, y]L<

min(X) ≤ Lmin(t).
If L>

min(X) holds over the interval[x, y] then∀t ∈ [x, y]L>
min(X) ≤ Lmin(t).

Proof. The paragraph above describes the intervals over whichL<
max(X) andL>

max(X)
hold. By introducing temporal constraints we only eliminate feasible schedules; the rest
follows immediately from the definition ofLmax(t) and Theorems 1 and 2. The proofs
for the other event-centric bounds are similar.2

5 Dominance

In this section we will describe our dominance criteria and show thatFBC dominates
Et andBC; we do not formally show thatBC andEt do not dominate each other,
relying on the intuition of Section 3 to adequately demonstrate this. In order to motivate
our definition of dominance, suppose that some procedureA is used to check the HC
in a chronological search framework with a static variable and value ordering heuristic.
Then we would likeA to dominateB if A leads to smaller search trees than usingB.

Definition 1. Let R be an RTN. LetT (R) be the set of all temporally consistent RTNs
that can be formed fromR by adding temporal constraints toR. Let A,B : T (R) →
{T, F, ?} LetUA(R) = {S ∈ T (R)|A(S) =?}. ThenA dominatesB onR if UA(R) ⊂
UB(R). A dominatesB if ∃R such thatA dominatesB onR and there exists noS such
thatB dominatesA onS. We writeA ≺R B or A ≺ B as appropriate.
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X[1,∞]

X
<[1,10],+x>

A

A

B

B

<[4,8],+x>
<[2,7],+a>

Lmax
<(X)

7

(b) The Resource Temporal Network supporting Lmax
<(X).  The latest lower bound of 

any event in Pmax
<(X) is 3.  The new upper bound of X is 8, so Lmax

<(X) holds over 
the interval [3,7].

3

<[3,5],+a>

(a) A Resource Temporal Network with Pmax
<(X) = {A,B}  and Pmax

<C(X) = {C}.  

<[2,16],+b>

[1,∞]
<[3,5],+b>

C

<[1,8],-c>

C

<[4,8],-c>

[0,∞]

Fig. 5. Deriving the time intervals over which resource availability bounds hold. The example
shows the calculation forL<

max(X).

Theorem 4. FBC ≺ BC.

Proof. Theorems 1 and 2 show that the flow construction guarantees the tightest possi-
ble bounds onL<

max(X), L>
max(X), L<

min(X) andL>
min(X) for anyRTN. Thus there

can be noS such thatBC ≺S FBC. The example shown in Figure 1 shows at least
one RTNR for whichFBC ≺R BC. This completes the proof.2

Theorem 5. FBC ≺ Et

Proof. Theorems 1, 2 and 3 shows that there is no RTNS for whichEt ≺S FBC. The
example in Figure 2 shows that there is at least one RTNR for which FBC ≺R Et.
This completes the proof.2

6 Complexity of Calculating FBC

A naive algorithm for calculatingFBC builds a new flow network for each event
X ∈ N . An equally naive analysis of the complexity of this algorithm isO(n ∗
MaxFlow(n, m) + n2), wherem is the number of anti-precedence relationships in
the RTN. However, this analysis is unsatisfactory for a number of reasons. Consider
the RTN in Figure 1. The flow networks required to calculateFBC are identical for
A,B,C, D becauseS(A) = S(B) = S(C) = S(D) . Additionally, the flow networks
include only a small fraction of then nodes in the RTN; strict precedences and equalities
among events will generally reduce the size of the flow problems. These observations
suggest it might be possible to improve upon the bound ofO(n∗MaxFlow(n, m)+n2)
to calculateFBC.

6.1 A Nontrivial Lower Complexity Bound

In this section we provide alower bound on the complexity of the naive approach to
calculatingFBC. We do so by constructing an RTN such that the flow problem to solve
for each event is both non-trivial and distinct. The RTN is a ”square” graph with

√
n

events per side. We index events by row and column in the square. The RTN has the
following strict precedences:(i, j) < (i+1, j), and(i, j) < (i, j +1) (obviously omit-
ting those links for which the indices are outside the bounds[0,

√
n]. By construction,

P ((i, j)) = ((x, y)|x > i∧y < j)∪((u, v)|u < i∧v > j). Thus, all of the flow graphs
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are distinct and nontrivial. Notice that we can assignc(X) arbitrarily to the events of
the RTN, as long as they are all non-zero and there is a mix of consumers and producers.
This RTN is shown in Figure 6.

(3,3)

P(3,3)

(2,4)

P(2,4)

(a) Worst-case RTN.

(b) The pending set for node (3,3).

(c) The pending set for node (2,4).

Fig. 6.A perverse RTN providing a worst-case lower bound for calculatingFBC.

We now proceed to construct a lower bound on the complexity of the naive approach
for calculatingFBC on this RTN. By construction we have guaranteed that no ”quick
fixes” can be used to decrease the complexity. The larger of the two induced flow prob-
lem for event(i, j) containsmax((i − 1)(

√
n − j − 1), (j − 1)(

√
n − i − 1)) events,

and at least this many flow arcs (we could do an exact count but it isn’t necessary since
we’re providing a lower bound.) Let us now assume we are using a FIFO preflow-push
algorithm to solve each flow problem [10]; this ignores any efficiency gained from an-
alyzing the pushable flow, but is also suitable for our purposes. Ifv is the number of
nodes in the flow problem, there are at leastv edges, and so the complexity of solving
the flow problem isΩ(v2.5). Using these assumptions the total complexity of solving
all the flow problems is

≤

√
n∑

j=1

√
n∑

i=1

max((i− 1)(
√

n− j − 1), (j − 1)(
√

n− i− 1))2.5

First, we simplify the sum to get a lower bound:

≤

√
n−1∑

j=0

√
n−1∑
i=0

(i(
√

n− j))2.5

We next approximate the sum with the integral (which, while bounding above, is
close enough for our purposes):

≈
∫ √

n−1

j=0

(∫ √
n−1

i=0

(i(
√

n− j))2.5di

)
dj

The first integral with respect toi is trivial. For the second integral we have∫
(
√

n− j)2.5dj = (
√

n− j)2.5

(
j −

√
n

3.5

)
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Collecting terms we have

√
n∑

j=1

√
n∑

i=1

max((i−1)(
√

n−j−1), (j−1)(
√

n−i−1))2.5 ≤
(

(
√

n− 1)3.5

3.5

)(√
n

3.5

3.5
− 1

3.5

)

Collecting the high order positive powers of
√

n we see that the naive algorithm has
a lower boundΩ(n3.5). Thus, for preflow-push flow algorithms using FIFO queues, the
naive algorithm forFBC requiresΩ(n ∗MaxFlow(n, m)) for solving the flows.

6.2 Incrementally Calculating FBC

As stated previously, the incremental technique described in [7] shaves a factor ofn off
the cost of calculatingEt. To do so, the incremental approach relies on restricted mod-
ifications of the flow problem. IfA is in the flow problem, it may be removed if it has
no successors other than the sink remaining in the flow problem; ifB is not in the flow
problem, it may be added if it has no predecessors other than the source in the flow prob-
lem. This provides some hope that we can find a way to eliminate the factor ofn ”extra”
cost for calculatingFBC that we described in the previous section. Unfortunately, this
is not the case. The crucial element of the complexity analysis in [7] requires that an
event always move from open to pending to closed. We show that naively applying the
incremental algorithm may result in a non-trivial number of events moving from closed
to pending, thereby defeating the cost-savings measures. Consider the RTN described in
Figure 6. The longest chain of events isO(

√
n), and there areO(

√
n) chains of events

we must solve for which the incremental approach cannot save any computation. Each
of these induces a total complexity ofO(MaxFlow(n, m)). Thus, for this problem,
even the incremental approach to solving flow problems customized for theEt algo-
rithm cannot reduce the complexity ofFBC belowΩ(

√
n ∗MaxFlow(n, m) + n2).

We can take advantage of the incremental flow calculation by judicious ordering of
the bounds we calculate for an eventX. For example, to find∆P<

max(X) we solve a
flow problem over{BS(X)∪U(X)}. To find∆P>

max(X) we solve a flow problem over
{AS(X)∪U(X)}. The change in the flow problem to be solved allows the incremental
approach to be used; thus, we can use the solution of the flow that gives us∆P<

max(X)
in order to find∆P>

max(X). The total complexity of solving both flow problems is
O(MaxFlow(n, m)) wheren andm are derived from the anti-precedence graph on
{BS(X)∪U(X)∪AS(X)}; this is cheaper than solving both flows separately as long
asU(X) 6= ∅.

We can also take advantage of the incremental flow calculation by storing and
reusing flow calculations and ordering the bounds calculations for different events. Sup-
poseZ ∈ {BS(X) ∪ S(X)}, we are calculating the bounds forX andZ ’s bounds
were previously calculated. ThenA ∈ BS(Z) must be either inB(X) or BS(X)
andB ∈ U(Z) must be either inB(X), BS(X) or U(X). This fits the conditions re-
quired to use the incremental approach by reusing the solution to the flow problem on
{U(Z) ∪ BS(Z)}. If we hadcachedthis solution, we could then retrieve it and reuse
it in time proportional to the number of previously stored flow calculations. We can
generate an event orderΠ(X) using a Depth-First Search through the anti-precedence
graph on all of the events to ensure that we can take advantage of incremental calcu-
lations. We call the resulting algorithmFBC − DFS, and it is described in Figure 7
below. As before, we need to calculate bounds for only one eventX ∈ S(Y ).

Obviously, the cost ofFBC − DFS depends on the DFS traversal used to order
the bounds calculations, as described in the next result.

Theorem 6. LetR be an RTN withm induced anti-precedence constraints in its STN
S. LetΠ be an ordering induced by a DFS traversal of the anti-precedence graph onS,
let w be the number of leaves of the traversal and letl be longest path in the traversal.
Then AlgorithmFBC − DFS takesO(w ∗ MaxFlow(n, m)) + n2 time, and takes
O(lm) space.
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FBC-DFS(R, Π(X))
Enforce Arc-Consistency onR
Maintain event-centric partitions
Fmax = Fmin = ∅
for each eventXi ∈ Π(X)

Find the latestXj ∈ Π(X) such thatj < i, Xj ∈ B(Xi) ∪BS(Xi) ∪ S(Xi)
if Xj 6= Xi−1 PopFmax andFmin to Xj

Inc-Bound(Xi)
end for

end

Inc-Bound(X)
Build flow problems forL<

max(X) from top(Fmax) andL<
min(X) from top(Fmin)

Find∆P <
max(X) ⊂ {BS(X) ∪ U(X)}

L<
max(X) =

∑
V ∈{∆P <

max(X)∪B(X)} c(V )

Find∆P <
min(X) ⊂ {BS(X) ∪ U(X)}

L<
min(X) =

∑
V ∈{∆P <

min
(X)∪B(X)} c(V )

Build flow problems forL>
max(X), L>

min(X)
Find∆P >

max(X) ⊂ {AS(X) ∪ U(X})
L>

max(X) =
∑

V ∈{∆P >
max(X)∪B(X)∪BS(X)∪S(X)} c(V )

Find∆P >
min(X) ⊂ {AS(X) ∪ U(X)}

L>
min(X) =

∑
V ∈{∆P >

min
(X)∪B(X)∪BS(X)∪S(X)} c(V )

Push the flow solutions forL<
max(X) ontoFmax andL<

min(X) ontoFmin

end

Fig. 7. A sketch of the Flow Balance Constraint implemented by using a Depth-First search
through the precedence graph and using an incremental approach to reduce computation time
for constructing the bounds.

Proof. Each leaf corresponds to a sequence such thatXi−1 ∈ {B(Xi) ∪ BS(Xi) ∪
S(Xi)}. Then, for each sequence, we can reuse the flow solutions fromtop(Fmax) and
top(Fmin) to solve eachXi; each chain costsO(MaxFlow(n, m)). Since there arew
such chains, we’re done with this part of the proof. Since the longest chain is of length
l, we store at mostl copies of a flow problem on at mostn nodes andm edges.

The theory of partially ordered sets gives some bounds onw andl; Let W be the
partial order width andL be the partial order length of the partially ordered set induced
by the anti-precedence graph. For any DFS traversal,w ≥ W andl ≤ L. However, it is
not obvious in general how to efficiently find a good event ordering.

7 Higher Order Balance Constraint

The quantitiesL<
max(X), L>

max(X), L<
min(X) andL>

min(X) can be thought of asfirst
order bounds on resource availability, in that they represent resource bounds before
and after one event. In this section we generalize these techniques in order to calculate
higher-order resource availability checks afterk events. To see why this is valuable,
consider Figure 8. Initially there are 2 units of resource available. We see that no first
order bound calculated byFBC proves that this RTN is impossible to solve. However,
notice that we can show that themaximumavailable resource after bothA andB have
occurred, which we denoteL>

max(A∧B), is−1. This corresponds to one of two sched-
ules: it is possible to either scheduleD ≤ B or C ≤ A, but not both simultaneously.
Thus, without further search, we can prove that the HC is satisfied because no solution
exists.

This example shows that it may be valuable to perform2d-order checks on re-
source availability by determining resource availability immediately before and after
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(a) Resource Temporal Network
with 2 units of resource initially
available.

A [1,10]

C
B [1,10]

<[1,10],-2> <[2,20],+1>

<[1,10],-2>

1

1

3

2

0
212020

(b) 1st and 2d order Flow Balance Constraint 
upper bounds. The second order bound 
Lmax

>(A^B) proves the NTC is violated.

-1

-2

D

<[2,20],+1>

Lmax
>(A),Lmax

>(B)

Lmax
<(C),Lmax

<(D)

Lmax
<(A),

Lmax
<(B)Lmax

>(C)

Lmax
>(D)

Lmax
>(A^B)

1

3

2

0

-1

-2

Fig. 8.An RTN for whichFBC fails to prove that the HC is unsatisfied.

sets of2 events. We assume without loss of generality thatX ∈ U(Y ). In order to
do this forL<

max(X ∧ Y ) we must account for the following possibilities: neitherX
nor Y have occurred,X has occurred butY has not, and vice versa. To find the max-
imum availability strictly before bothX andY we solve the flow problem over the
events of{{BS(X)∪U(X)}∩ {BS(Y )∪U(Y )}}. We call the resulting set of events
∆P<

max(X ∗ Y ). To find the maximum availability strictly beforeY assumingX < Y
requires adding the constraint and recalculating the partitions of the anti-precedence
graph relative toY . We then solve the flow problem defined byBS′(Y ) ∪ U ′(Y ) and
call the resulting set∆P<

max(X < Y ). To find the maximum availability strictly before
X assumingY < X proceeds similarly, and the resulting set is called∆P<

max(Y < X).
We defineL<

max(X ∧ Y ) as

max(
∑

V ∈{∆P <
max(X∗Y )∪B(X)∩B(Y )}

c(V )

∑
V ∈{B′(Y )∪∆P <

max(X<Y )}

c(V )

∑
V ∈{B′(X)∪∆P <

max(Y <X)}

c(V )

and∆P<
max(X ∧ Y ) is the set of events defining the maximum.

For L>
max(X ∧ Y ) we we must account for the following possibilities:X andY

occurred at the same time,X occurred beforeY , and vice versa. These options account
for the possibility that, for example, events inA(X)∩U(Y ) contribute toL>

max(X∧Y ).
To find the maximum assumingX = Y , we first solve the flow problem over the events
of {{AS(X)∪U(X)}∩{AS(Y )∪U(Y )}}. We call the resulting set∆P>

max(X = Y ).
To find the maximum assumingX < Y requires adding the constraint and recalculating
the partitions of the anti-precedence graph relative toY . We solve the flow problem over
{AS′(Y ) ∪ U ′(Y )}, and call the resulting set∆P>

max(X < Y ). and∆P>
max(X > Y )

is defined similarly. We defineL>
max(X ∧ Y ) as

max(
∑

V ∈(∆P >
max(X=Y )∪B(X)∪BS(X)∪S(X)∪B(Y )∪BS(Y )∪S(Y )

c(V )
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V ∈B′(Y )∪BS′(Y )∪S′(Y )∪∆P >

max(X<Y )

c(V )

∑
V ∈B′(X)∪BS′(X)∪S′(X)∪∆P >

max(Y <X)

c(V )

and∆P>
max(X ∧ Y ) is the set of events defining the maximum. The lower bounds

are calculated in a similar manner.
Let us see how this works in Figure 8. To findL<

max(A ∧ B), note{{BS(A) ∪
U(A)} ∩ {BS(B)∪U(B)}} = ∅ and{B(A)∩B(B)} = ∅. Thus,L<

max(A ∗B) = 2,
which is achieved by assuming no event has taken place. To findL<

max(A < B), we
see thatU ′(B) = D; the best schedule here isA,D for an availability of1. Similarly,
to find L<

max(B < A), we see thatU ′(A) = C; the best schedule here isB,C for an
availability of 1. Thus,L<

max(X ∧ Y ) = 2. To calculateL>
max(A ∧ B) we see that

∆P>
max(A = B) = ∅, leading toL>

max(A = B) = −2. However,∆P>
max(A < B) =

D; this corresponds to the scheduleA,D, B, with the result thatL>
max(A < B) = −1,

and symmetricallyL>
max(B < A) = −1. Thus,L>

max(A ∧B) = −1.
The total complexity of the resulting naive algorithm for calculatingSecond order

Flow Balance Constraint(FBC2) is Ω((n2) ∗ (MaxFlow(n, m)+n2)). Then2 term
comes from the fact thatn(n− 1) pairs of bounds must be calculated. The complexity
bounds obscure the fact that6 flow problems must be solved per pair of events, and also
hides the fact that the precedence constraints must be recalculated for each constraint
imposed to set up the flow problems. Note, however, thatn2 is a very crude estimate
of the total number of bounds to compute. IfA strictly precedesB thenP<

max(A ∧
B) = P<

max(B). Thus, the induced precedences vastly reduce the number of bounds
to calculate. Additionally, the sizes of the flow problems will generally be larger as
the number of events involved climbs. These factors make a more precise complexity
analysis difficult. Finally, it is likely that the incremental flow algorithm described in
[7] can be used to further reduce the complexity. It is sufficient for our purposes to
demonstrate that even tighter inferred constraints can be calculated in time polynomial
in the number of events considered. While we can generalize further to higher order
bounds, the apparent complexity even of the second order bounds makes it likely that
these higher order bounds will not be practical to compute.

8 Conclusions and Future Work

In this paper we have also shown how to exploit the features ofBC andEt to construct
FBC, a tighter bound on the availability of resources for RTNs than either of the pre-
vious approaches. We have shown thatFBC dominates bothEt andBC in terms of
the size of search trees generated under chronological backtracking search with a static
variable ordering, and that contrary to expectations,BC andEt do not strictly domi-
nate each other. We have described an incremental algorithm,FBC −DFS that takes
advantage of incremental flow calculations by using a depth-first search traversal of the
anti-precedence graph. Ifw is the number of leaves of the traversal andl is longest
path in the traversal, algorithmFBC−DFS takesO(w∗MaxFlow(n, m)) time, and
takesO(lm) space. The technique generalize for calculatingFBC leads to even tighter
bounds, but at sharply increased computational cost.

While we have proven dominance ofFBC, an empirical study will be necessary
to determine the relative value ofEt, BC andFBC for speeding up the solving of
scheduling problems. In particular, it is necessary to determine how to generate good
orderings to optimize the performance ofFBC − DFS. A second, equally impor-
tant empirical study will be necessary to shed light on how to integrate heuristics that
make use of the various bounds. Laborie [6] has built numerous such heuristics forBC.
However, such heuristics have complex interactions with the pruning power of the en-
velopes. It will likely be necessary to trade off between the pruning power and heuristic
predictiveness of the resource bounds to craft the best scheduling algorithm.
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Changes to dominance criteria that we use are worth contemplating. A dominance
criteria for dynamic variable ordering based search would be handy but is complicated
due to the interaction of pruning techniques and heuristics. Dominance criteria for local
search based algorithms are also desirable. On the one hand, requiring thatA domi-
natesB on R if UA(R) ⊂ UB(R) is rather strong, and could be weakened, say, to
|UA(R))| < |UB(R))|. On the other hand, requiring thatA dominatesB if ∃R such
thatA dominatesB onR and there exists noS such thatB dominatesA onS is some-
what weak, and perhaps could be strengthened.
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